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ON FIXED-DURATION DYNAMIC GAMES™

G.V, TOMSKII

Four methods of successive approximations are examined for a dynamic game's value
function, which are used to construct the players' ¢ -optimal strategies. General
piecewise~programmed strategies are used to prove the convergence of these methods.
The paper's contents about the investigations in /1—9/ and generalize the results
in /8,9/ to the case of a general dynamic system.

1. Let there be specified a time interval l[¢, 7], a state set X, sets U and V, the
first (second) player's control set D, (D,) whose elements are mappings of the time interval
[t,, T} into U (V), and the state function

w:iltyg, TV x Ity, Tl x X x Dy x Dy —> X

The quintuple 2 =(l¢, T], X, D;, D,, ») is called a general dynamic system if the following con-
ditions are fulfilled:

1) sets X, D,, D, are nonempty;

2) if wu, uyeD,, v, v, D, and 1, b, <1, <ty T, then we can find U & D,, vy D,
such that

i { wy )y 0 <t ta { pi(l), << b
= v =
3( 112(t s t2<t"i ts, i ) l'g(f\. ts i/‘t(/ ts
] N

3) the function I =x(t, T, 14, u, v) is defined for all ¢ > 1 and is not necessarily de-
fined for all i <rT;
4) the equality «x (i, ¢, z, u, v) =z is fulfilled for any ¢, {t 7T, 2= X, ues D, veE Dy;

5) the equality
% (tg, ty, Z, U, V) = x (tg, Loy % (s byy T, U, V), U, V)

is fulfilled for any to<t; <t,<t3< T and any z& X, uesD,, vE Dy;
6) if uy, Dy, v, v, =D, and Uy, )y =uy (8), vy () =0y (1) when <t < £< 1t T, then
for any z& X we have
% (tyy By, &y Uy, V) =X (ty, by, Z, Uy, V)

An element z (f) =% (t, ty, Ty, 4, v) of set Xis called a state of system ¥ at the instant ¢,
while the corresponding mapping z (+)- lty, 1 — X is called a trajectory of system X if at in-
stant !y the system is found to be in state z, and the controls u and v are acting on it. By
Dy [t,, t;) we denote the set of all restrictions of the k -th player's controls to the interval
[th t2)v k= 17 2,

2. We examine dynamic games T (f,, z,) described by system ¥, which the first player's
payoff is

I(u, v, ty, 2,) = H (T, t,, z, u, v))

where H: X — B'. We assume that the first player maximizes this functional, while the second
minimizes it. We also assume that the players use piecewise-programmed strategies /3—7/. We
consider the following four sequences, the first two of which are generalizations of the seg-
uences in /8,9/:

Vit (t, @) = Wyt (¢, 2) = inl sup H (x |—1)

veDy wzZhy

Vi (t @) = W, (t, 7) —sup inf H (x |c_7)
uehy veD:

V.t (t, ) — inf inf sup V,, (1, %)

tet, T veD.: ue Dy
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Voo, 2) = sup  sup inf Vg (r, %)
el T weshy vl

Wyt (t, ) — inf sup inf W;..l {1, %)
veslis nesbDy v={f. T}

W, {t, ) - sup inf sup W, (1, %)

weEh vl =1, T
LhKtST, 28X, n=2 3 ... x=ult, & 7 u V)

We assume that the dynamic system I satisfies the condition:
7) for any to St <<l < T, z, 2, & X there exist controls u, =u(t, &, 2, z,) & D, [t, t,)

and v, = v (t, l 2, T,) = D,It, ¢,) such that
{d I {8 toy 2y Uy V) % by, 2y u, 0V < {dlz, ] exp Bty —1) + v (6 —1)0, — )  (2.1)
LIy, lgw’?;'?(ﬁ) =0, m B>0
for all v Dy, ve=D,, where d is some metric on state set X,
Theorem 1, If the dynamic system % satisfies condition 7) and the function H is uni~

formly continuous, then for any number ge>0 a pair of e-optimal strategies exists in game
I (., z,) and the condition

Vi, 2y =slim V,* (, 2) =lim V,," (1, 2) = lHm W,* {¢, 2) =lim W, (t, 2), n—> oo (2.2

is fulfilled for the value function V (i, z,) =valT (i, =x,).

3., For dynamic systems satisfying the condition

8) vcDh, VCD,
we examine the quantities

Vnrl+ (t\v .’t} == Wc1+ (tv 3/') == in{ sup H (X Itzﬂ’)
eV ueh
Vo (i, 2) = Wy {t, z) =sup inf H (% lr1)
usll vebs
Vo {t, 2) = inf inf sup Vi g (T, %)
rexft, T} vV usmDy

Ve {t, 2) = sup sup inf Vi {1, %)
=, T usl o=Ds

Weo." (&, x) = inl sup inf Wiy (T, %)
veEV ugby veEf T

W (t,2) =sup inf sup Wiy (1, %)
1

uesli vl =, T
st 22X, n=2.3,...; x=x(1,{ 1 u, v

Let the following condition be fulfilled:
9) for all L <CH < T, 2, 2, & X there exist controls Ug = u{l, x,1)=U, vy =0 (ty,

x;, 1) & V such that (2.1) is fulfilled for all <\t =4<7T, v =D, veD,.
Theorem 2. If conditions 8) and 9) are fulfilled for a dynamic system % and function
H is uniformly continuous, then game I'y has a value and the equalities

Vo =val Ty =lim Vo = lim Vi = lim Wy -- lim Wi, == (3.1)
lim Veny = lim Vo = lim Wi, — lim W
are valid,
Here and subseguently the asterisk signifies that {, and z, are the arguments of the
function in question; the limit is taken as »n — oo.
4. Let us prove Theorems 1 and 2. For any finite partitioning
A={ly=tp <A< tA <. .. <y =T}
the dynamic games with discrimination T 4, T'y, have the values /6,7,10/
Vb =val T2 = inf sup ... inf sup H () 1)
Mo? n{a) ¥n(A) (4.
Var = val Ty == sup inf . .. sup inf H (x)
wow Unga) Pnia) {4.2)

uxy & Dl [f'l’?—n "'kﬁ)’ v £ Da [t?—l» txﬁ)q ko= i» 27 ca R (A>
%= 0 AT, Loy Tgd Ups « o or Haga); P o« - o1 Uniay)
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Let the quantity V,.,* be defined by formula (4.1) wherein

D My, LY, eV, k1,2, 0, n(A)
and let the quantity V,, be defined by formula (4.2) wherein

w = U, oy & Dy ltiny, 6%, k4,2, ..., n(4)

These quantities can be locked upon as the values of the dynamic games with discrimination

Fg” 1ﬁ* in which the player being discriminated uses piecewise-constant strategies /6/.
From condition 7) and the uniform continuity of function H follows the equality (1,6,10/
Ve o lim V2% o lim Vyoe, 7 — oo (4.3)
6t BT — )2 k0,1, 2, ..., 2

Analogously, from conditions 8) and 9) and the uniform continuity of Il follows the equality
Ve = lim Va™ — lim Ve, (4.4)

The following statements are valid.

Lemma 1. V:ku(m > > W+ > VVN > Vn > Vw(n)*, n -= 1, 2, e
>

* 2

Lemma 2. Ve > Vi >W >0 0 > Vo> Vi n=1, 2,

* 2

All the sequencies in (2,.,2) and (3.1) are monotone. Consequently, Theorem 1 follows
from (4.3) and Lemma 1, while Theorem 2 follows from (4.,4) and Lemma 2,

Lemma 1. All the inequalities in this lemma, except the middle one
m= 1,2, .. (4.5)

e W

w mk mx?
follow from the definitions of the sequences being examined. To prove inequalities (4.5) we

take advantage of the following concept.
Definition. The matrix

' ‘
. !
SUE U
to ot ¢
P P Py

et = T — 4, 6t X X D, T) X Dy[t, T) =[0, T — 1)
gpl: X =Dy {t, ), t =ty T)k=1,2, ..., n

is called a general nth-order positional piecewise-programmed strategy for the first player
in system =,

The general positional piecewise-programmed strategies for the second player are defined
analogously. For each position ({i,,r,} any pair of general positicnal piecewise-programmed
strategies

t l t
LIRS

] 1

a =

t t
[T A P P L/
define a unique trajectory
()= % (¢, ty, 74, a, B) = % (t, Ly, e, u (a, b), v{a, b))
of system I inthe fcllowing manner, At first the players choose the controls uy = % (1),
= ¢,'* (14). For definiteness we assume that
51"‘I (24, Uy, 1y) < 0'11" (T4 Uy, )
Then at the instant h“)“:h +-q“(1*,uhtu) the first player chooses the new control
A1)
wp = @yt (=) & DD, 1), 2D - (1, 14, 24, 10, 0)
For example, let
(1)
i
1(12) =1, + 5{1" (T4, ur’y uas v7) < t(ll) -1 x'zl (:r(ll), uy, vy')
where u,’ is the restriction of «, to [t,4%) and »’ is the restriction of » to [, 7). Then

at the instant ' the second player chooses the control
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(2) i
t ’
vy == Py ¥ e D, £, 1), 2 = (2(12), ), 20, uy, 1)

Proceeding thus, after at most n»n-+m — 1 steps we obtain a unique pair of controls u (a, b)
and v(a, b on {&, 7).
For any number &§>0 we define the strategy
g (6). et (8)
lo' ). 0, )]

a(6) =

as follows: ent ) =7 —1 (4.6)
_ = , &
Wionan (6 @) S Wo (1o, 2, (8) (1), v)) + -

su W (1, %, t, z, u, v)) <
en ) ok (T %4 N

)
Wik (6! (0 (2w, 0), % (5! (0) (@, w, 0, 2, 2, 0, 0) g
VueD [, 1), veD,[t, T) t=(t, T]. 2z X
k=1,2,....m—1
)
Wit 2) < H(x (T, t, ' (8) (), v) + >, Vo (4.7)

From (4.6), (4.7) follows the inequality
K (a®), by ty, 7a) = I (0 (T, ty, g, a @, 0N 2> W, — 8 (4.8)

for all general positional piecewise-programmed stategies & of the second player. Analogously,
a general positional piecewise-programmed strategy 1 (§) of the second player exists such that

K@, b®), ty, re) <IWE 18 (4.9)

M

for all general positional piecewise-programmed strategies a. Inequality (4.5) follows from
(4.8) and (4.9). Lemma 2 is proved in the same way.

Note., The strategy pair a (¢/3),b (¢/3) forms an ¢ -equilibrium situation in the dynamic game
I {i,,zy) in the class of general positional piecewise-programmed strategies if only m is a

sufficiently large number and the hypotheses of Theorem 1 are fulfilled.
5, Prom Theorem 1 follows:

Theorem 3. Let the dynamic system X satisfy condition 7) and function H be uniformly
continuous. Then a function V (¢, ) such that

VA(T, zy - H (z) (5.1)
satisfying condition (5.2) or (5.3)
V@, 2y —in{ sup inf V (1, %) -=sup inf sup V (1, %) (5.2)
r& o uelh Tt T uE ve&Elb. 1= T
Vit zy) — inf inf sup V -~ su su inf V - s
( el Tl veb, ieg. (v %) te—llp. T] :L{g f?f. (Tt %, (= % (v, £, 2, u, v) (5.3)

for all tp<{t<. T,z2& X, is the value function of the dynamic game I (1, z), val I’ {, z)
Vi, o), tg< t«<. T, ze= X,

Proof, From (5.1) follows the inequality
Vict, o) == W ({t, 2) <V ({, )< Vit (t, 2) - Wt (t, )
Then from (5.2) we obtain

11, {8 N U7 (s N o TAT O+ a0 LN a
Yoy by I) s ¥V L, Z) 5, Wy (L, Z), n =-4

or, if the stronger condition (5.3) is fulfilled, then
Voo, o) < VL, o)< Vb (t, 2), n=2,3,...

By Theorem 1 we have V ({, ) valT (¢, z).
From Theorem 2 follows
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Theorem 4., Let the dynamic system 3 satisfy conditions 8) and 9) and function H be
uniformly continuous, Then a function V (¢, x), satisfying condition (5.1) and such that con-
dition (5.4) or (5.5)

Vi@, 2) inf sup ini V (1, %) sup inf sup V (1, %) (5.4)
vV wedh te[t, T el reln e T
. e i . - . (5.5)
Vi, x) inf inf sup V(t, %) sup  sup inf V (1, %)
=L TY ve v =308 TEH, T usl vz,

 wix, t, z, u, v))

is satisfied for all (<. t< T, 2& X, is the value function of dynamic game I (t, z).

We note that (5.3) is a generalization of the equations in /8,9/. All Egs.(5.2)— (5.5)
can be used to find € -optimal strategies in dynamic games I' (¢, z) in the class of general
positional piecewise-programmed strategies,
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