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ON FIXED-DURATION DYNAMIC GAMES* 

G.V. TOMSKII 

Four methods of successive approximations are examined for a dynamic game's value 
function, which are used to construct the players' &-optimal strategies. Genural 
piecewise-programmed strategies are used to prove the convergence of these methods. 
The paper's contents about the investigations in /l-9/ and generalize the results 
in /8,9/ to the case of a general dynamic system. 

1. Let there be specified a time interval [t,, 2'1, a state set X, sets U and V, the 
first (second) player's control set Dl(D2) whose elements are mappings of the time interval 

Ito, Tf into u(v), and the state function 

x : rt,, Tl 

The quintuple E = ([to, Tl, X, D,, D,, x) 
ditions are fulfilled: 

1) sets X, D,, D, are nonempty; 

2) if u,, U, E D,, L+, V,E D, and 
such that 

3) the function 
fined for all t<r; 

4) the equality 

5) the equality 

< It,,, Tl r’ X A D, Y D, -+ X 

is called a general dynamic system if the following con- 

t, < t,< t, <t, < T, then we can find us E D,, ~1 ED, 

t1< t .< tz, 
t2 < t -’ t3, URN’ 

VI@), t1<: t < ti 
~ (f, t ‘t ,t3 ?.,. 2‘. cx. 

5 = x (t, 7, x*, u, U) is defined for all t> t and is not necessarily de- 

x (t, t, z, u, v) yz x is fulfilled for any t, < t < T, 5 E X, u cz D,, v E D,; 

x (t3, t,, x, u, v) =x (t3, tp, x (tz, t,, x, 4 4 u7 4 

is fulfilled for any to< tl<t,<t& 2’ and any XE X, UE D,, uED,; 
6) if %r uz ED,, ~1, v2 E D, and u1 (t) ~ u2 (t), VI (t) = ug (t) when t, << t, < t < t, < T, then 

for any SE X we have 

x @z, t,, r, U1r v1) =x (12, t,, 5, %, u*) 

An element z (t) == x (t, t,, 2*, u, u) of set X is called a state of system Z at the instant t, 
while the corresponding mapping s(.). It,, Tl-+X is called a trajectory of system 2 if at in- 
stant t, the system is found to be in state X* and the controls u and v are acting on it. By 
DI, it,, t.J we denote the set of all restrictions of the k-th player's controls to the interval 

[tl, tz), k = 1, 2. 

2. We examine dynamic games r (t** x*) described by system 2, which the first player's 

payoff is 

1 (u, v, t*, r*) = H (x (T, t,, x*. u, u)) 

where H: X -+ R’. We assume that the first player maximizes this functional, while the second 
minimizes it. We also assume that the players use piecewise-programmed strategies /3-7/. We 
consider the following four sequences, the first two of which are generalizations of the seq- 
uences in /8,9/: 

VI+ (t, 5) = WI+ (t, z) =: inf sup H (x jrsT) 
VED? IGD, 
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t, \< t < T, x ES X, n = 2, 3, . . . ; x =x (t, t, x, u, u) 

We assume that the dynamic system r, satisfies the condition: 
7) for any to < 4 < t, *< T, .q, x2 G X there exist controls U* i= u (tl, t,, x1, x2) E D, [tl, t2) 

and c, = u (tl, t,, 11, x2) E D, It,, ta) such that 

{d Ix (t, t,, 211 U*t V), x 0, t1, 52. u, v*)y G v 1% x*lY erp B tta -G) + Y (t* - UG - 4) (2.1) 

t,< t < t,, 1$12 Y (6) r- 0, m, B> 0 

for all ~ED,,vED,, where d is some metric on state set X. 

Theorem 1. If the dynamic system 2 satisfies condition 7) and the function N is uni- 
formlycontinuous,then for any number e>O a pair of E-optimal strategies exists in game 

r(t,, CT*) and the condition 

V (t, z) = Em V,+ (t, x) -=- Iim V,- (t, 2) s lim W,+ (t, 2) =- Em IV,,- (t, z), n--t 00 (2.2) 

is fulfilled for the value function V (t,, 5*) = val r (t*, 3c*). 

3. For dynamic systems satisfying the condition 
8) VcD,, VcD, 

we examine the quantities 

to < t -< T, :L’ E X, n = 2. 3, . . . ; x= x (2, t, .I, u, n) 

Let the 
9) 

following condition be fulfilled: 
for all to< &< T, x,, x,E X there exist controls u* = U(1,,Z,,.Q)EU,U, =u(t,, 

ZQ,X&E V such that (2.1) is fulfilled for all t, < t = t2< T, UEL~~, vs::D,. 

Theorem 2. If conditions 8) and 91 are fulfilled for a dynamic system X and function 
N is uniformly continuous, then game r* has a value and the equalities 

are valid. 
Here and subsequently the asterisk signifies that t, and x* are the arguments of the 

function in question; the limit is taken as n+oo. 

4. Let us prove Theorems 1 and 2. For any finite partitioning 

A A = It* = toA < t,A < t,* < . . . < L,,(~) I: T) 

the dynamic games with discrimination reA, I?,, have the values /6,7,10/ 

(4.1) 

(4.2) 
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Let the quantity P',,A be defined by formula (4.1) wherein 

U,, .> D, rt;_.,, 1*"), VA ~? I', Ic 1, 2, . ., II (A) 

and let the quantity I'& be defined by formula (4.2) wherein 

U,, )E u, v,; E D, rt;,, t&"), k 1, 2, ., ,I (A) 

These quantities can be looked upon as the values of the dynamic games with discrimination 

I$+., r:, in which the player being discriminated uses piecewise-constant strategies /6/. 

From condition 7) and the uniform continuity of function II follows the equality (1,6,10/ 

i'* lim J'c(") lim 1;,,,$,,,, n*cc (4.3 
la(ri, 
t/, I, + Ic (I’ - t*):Y, Ii 0, I, 2, ., 2” 

Analogously, from conditions 8) and 9) and the uniform continuity of II follows the equality 

I'* lim V,W*(n, : lim Tf&,,, (4.4 

The following statements are valid. 

Lemma 1 . KY > v)* > w’,* > “‘;I* > VJU, > vw(,q*, n ~~ 1, 2, . ” 

Lemma 2 . v2r’) > VJn* z w,~++ > H ;& > Tip+? T/1;(,)*, n = I, 2, . 

All the sequencies in (2.2) and (3.1) are monotone. Consequently, Theorem 1 follows 

from (4.3) and Lemma 1, while Theorem 2 follows from (4.4) and Lemma 2. 

Lemma 1. All the inequalities in this lemma, except the middle one 

Km* > "',*, I)! 1, 2, .., (4.5) 

follow from the definitions of the sequences being examined. To prove inequalities (4.5) we 

take advantage of the following concept. 

Definition. The matrix 

is called a general jzth-order positional piecewise-programmed strategy for the first player 

In system 2. 
The general positional piecewise-programmed strategies for the second player are defined 

analogously. For each position (t,,.r,) any pair of general positional piecewise-programmed 

strategies 

define a unique trajectory 

3 (t) ~= x (t. t,, .r*, (1, b) 7 x (t. t,, I*> u (a. b), c (a. b)) 

of system ?: inthe following manner. At first the players choose the controls U1 :- (l‘l" (z*), 

~,=:+~(z*). For definiteness we assume that 

El '* (s*, u,. 1.1) < 0," (1*, u,, IT1) 

Then at the instant t,(l) 7 t, + E," (z*, u~,L~,) the first player chooses the new control 

,i" 
U: .-. 'pz (2:") ED, [ty), T), 2:” -~ x (ty), t,, ztr u,, u,) 

For example, let 
$1) 

r?) = 1, + G>(Z*, u;, ur;UI)< tl" -in ?,' (ZP), u>,t.;) 

where u,' is the restriction of U, to [t,, t,(l)) and cl' is the restriction of I', to [t,(l), T). Then 

at the instant tl(" the second player chooses the control 
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Proceeding thus, after at most ~1.;~ nl - 1 steps we obtain a unique pair of controls u (a, b) 

and v (a. b) on I&, T). 
For any number 6>0 we define the strategy 

(4.6) 

From (4.6), (4.7) follows the inequality 

K (a (e), h, L,, J& Ir(~(T,f*,~*,a(63,b))~-~,*-- (4.8) 

for all general positional piecewise-programmed stategies b of the second player. Analogously, 
a general positional piecewise-programmed strategy b(d) of the second player exists such that 

K (a, b (a), t*, r.) < iI-;* 1 6 (4.9) 

for all general positional piecewise-programmed strategies 0. Inequality (4.5) follows from 

(4.8) and (4.9). Lemma 2 is proved in the same way. 

Note. The strategy pair n (P/X), 6 (~'3) forms an t-equilibrium situation in the dynamicgame 
I‘([*,~*) in the class of general positional piecewise-programmed strategies if only ,II is a 
sufficiently large number and the hypotheses of Theorem 1 are fulfilled. 

5. From Theorem 1 follows: 

Theorem 3. Let the dynamic system 2 satisfy condition 7) and function H be uniformly 
continuous. Then a function J' (t, 5) such that 

1/ (T, 1) ff (z) (5.1) 

satisfying condition (5.2) or (5.3) 

V (t, 5) - int sup inf V (5, x) ~- Sup inf snp 1' (7, x) 
UEl)l CE,,. 1::, I. r, (5.2) 

for all to<< t *: T, zE X, is the value function 
v (t, r), t, k- t; T,XEX. 

Proof. From (5.1) follows the inequality 

v,- (t, 5) = W,- (f, 5) :, li (t, 

Then from (5.2) we obtain 

of the dynamic game 1' (2, X), val 1' (i, z) 

rv,,- (f7 4 -‘. v (f, 5) x: Iv,+ (f, x), n =- 2, 3, 

or, if the stronger condition (5.3) is fulfilled, then 

v,- (t, I) a- v (t, 5) 5: v,+ (t, 5), n 7~ 2, 3, . 

By Theorem 1 we have V(t, 5) val r (1, z). 
From Theorem 2 follows 
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Theorem 4. Let the dynamic system X satisfy conditions 8) and 9) and function H be 
uniformly continuous. Then a function 

dition (5.4) or (5.5) 
v (t, x), satisfying condition (5.1) and such that con- 

1. (t, x) inf Yt,, ,,cI,!I r& 1' (tr x) sup :::f' :=';,_ ,:;:pr, v (T> x) (5.4) 

(X x (z7 t, 5, u, 4) 

is satisfied for all 1, :.. t :: T, x E x , is the value function of dynamic game r (t, x). 
We note that (5.3) is a generalization of the equations in /8,9/. All Eqs.(5.2)-(5.5) 

can be used to find E -optimal strategies in dynamic qames I- (t, 5) in the class of general 
positional piecewise-programmed strategies. 
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